Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo
نویسندگان
چکیده
PURPOSE This research was conducted to assess the biocompatibility of the core-shell Fe(3)O(4)@ Au composite magnetic nanoparticles (MNPs), which have potential application in tumor hyperthermia. METHODS Fe(3)O(4)@Au composite MNPs with core-shell structure were synthesized by reduction of Au(3+) in the presence of Fe(3)O(4)-MNPs prepared by improved co-precipitation. Cytotoxicity assay, hemolysis test, micronucleus (MN) assay, and detection of acute toxicity in mice and beagle dogs were then carried out. RESULTS The result of cytotoxicity assay showed that the toxicity grade of this material on mouse fibroblast cell line (L-929) was classified as grade 1, which belongs to no cytotoxicity. Hemolysis rates showed 0.278%, 0.232%, and 0.197%, far less than 5%, after treatment with different concentrations of Fe(3)O(4)@Au composite MNPs. In the MN assay, there was no significant difference in MN formation rates between the experimental groups and negative control (P > 0.05), but there was a significant difference between the experimental groups and the positive control (P < 0.05). The median lethal dose of the Fe(3)O(4)@Au composite MNPs after intraperitoneal administration in mice was 8.39 g/kg, and the 95% confidence interval was 6.58-10.72 g/kg, suggesting that these nanoparticles have a wide safety margin. Acute toxicity testing in beagle dogs also showed no significant difference in body weight between the treatment groups at 1, 2, 3, and 4 weeks after liver injection and no behavioral changes. Furthermore, blood parameters, autopsy, and histopathological studies in the experimental group showed no significant difference compared with the control group. CONCLUSION The results indicate that Fe(3)O(4)@Au composite MNPs appear to be highly biocompatible and safe nanoparticles that are suitable for further application in tumor hyperthermia.
منابع مشابه
Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications
The unique properties and applications of iron oxide and Au nanoparticles have motivated researchers to synthesize and optimize a combined nanocomposite containing both. By using various polymers such as chitosan, some of the problems of classic core-shell structures (such as reduced saturation magnetization and thick coating) have been overcome. In the present study, chitosan and one of its we...
متن کاملSynthetic Application of Magnetic Nanocomposite Fe3O4@PEG-Au as a Heterogeneous and Reusable Nanocatalyst in The Suzuki Coupling Reactions
In the present study, we carried out chemical synthesis and characterization of Fe3O4@PEG-Au as a magnetic nanocomposite in aqueous solution by chemical co-precipitation of Fe3+ and Fe2+ ions and encapsulated by poly (ethylene glycol) (PEG) in order to enhancing hydrophilicity, biocompatibility and immobilizing gold ions in the presence of NaBH4 as a reducing agent. Nanostructures were characte...
متن کاملFacile preparation of hyaluronic acid and transferrin co-modified Fe3O4 nanoparticles with inherent biocompatibility for dual-targeting magnetic resonance imaging of tumors in vivo.
Clinical diagnosis of malignant tumors using nanoprobes needs severe improvements in the aspects of sensitivity and biocompatibility. Integrating a dual-targeting strategy with the selection of human-inherent elements and molecules as raw materials shows great potential in the development of a biosafe and sensitive nanoplatform. To carry out the proposed design, we constructed a biocompatible, ...
متن کاملMultifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery.
A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescen...
متن کاملMagnetic resonance imaging of glioma with novel APTS-coated superparamagnetic iron oxide nanoparticles
We report in vitro and in vivo magnetic resonance (MR) imaging of C6 glioma cells with a novel acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (Fe3O4 NPs). In the present study, APTS-coated Fe3O4 NPs were formed via a one-step hydrothermal approach and then chemically modified with acetic anhydride to generate surface charge-neutralized NPs. Prussian blue stainin...
متن کامل